University Of Tasmania
Dominguez et al 2007 J Neurosci.pdf (529.05 kB)
Download file

Morphological Effects of Estrogen on Cholinergic Neurons In Vitro Involves Activation of Extracellular Signal-Regulated Kinases

Download (529.05 kB)
journal contribution
posted on 2023-05-19, 13:13 authored by Dominguez, R, Jalali, C, de Lacalle, S
In the present study, we examined the ability of estrogen to enhance cholinergic neurite arborization in vitro and identified the signal transduction cascade associated with this effect. Basal forebrain primordia collected from rat pups on postnatal day 1 were cultured for 2 weeks and then treated with 5 nM 17β-estradiol for 24 hr. Cholinergic neurons were identified immunocytochemically with an antibody against the vesicular acetylcholine transporter and digitally photographed. Morphological analysis indicated that female cultures respond to estrogen treatment with an increase in total neurite length per neuron (4.5-fold over untreated controls) and in total branch segment number per neuron (2.3-fold over controls). In contrast, there was no change in total neurite length per neuron in male cultures, and we also observed a decrease in total branch segment number per neuron (0.5-fold below controls). Detailed histograms indicated that estrogen increases primary and secondary branch length and number and also increases terminal neuritic branches to the seventh order in female cultures. In a second set of experiments, we investigated the signal transduction cascade involved in this response, and found that an upstream extracellular signal-regulated kinase (ERK) inhibitor blocked the ability of estrogen to enhance outgrowth in female cultures. Our study provides strong evidence in support of the fact that the ERK pathway is required for estrogen-induced structural plasticity in the cholinergic system of female rats. Understanding the intracellular processes that underlie the response of cholinergic neurons to estrogen provides a necessary step in elucidating how cholinergic neurons can be particularly susceptible to degeneration in postmenopausal women.


Publication title

Journal of Neuroscience










Tasmanian School of Medicine


Society for Neuroscience

Place of publication

United States

Rights statement

Copyright © 2004 Society for Neuroscience. Licensed under Creative Commons AttributionAttribution-Noncommercial-Share Alike 3.0 Unported License (

Repository Status

  • Open

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics