University of Tasmania
139300 - Motion analysis of an autonomous underwater vehicle tethered with an optical fiber for real-time surveillance.pdf (1.42 MB)

Motion analysis of an autonomous underwater vehicle tethered with an optical fiber for real-time surveillance

Download (1.42 MB)
journal contribution
posted on 2023-05-20, 14:52 authored by Fan, S, Chan, KC, Christopher ChinChristopher Chin
Autonomous underwater vehicles (AUVs) are playing an increasingly important role in ocean exploration. In some applications, an AUV can be tethered by a communication cable, such as an optical fiber, for real-time surveillance. This article focuses on the motion analysis of the AUV and cable coupling system to investigate the interaction between AUV and cable dynamic behaviors, especially under the current disturbance in the dynamic ocean environment. The dynamic equations of the coupled AUV and cable are derived using the well-known finite difference method and solved using the advanced trust-region method in MATLAB. The model-based simulation scheme is presented and further verified by comparing the simulation results with the validated ones published in the existing literature. The motion cases when the tethered vehicle maneuvers in a variety of motion modes and current scenarios are studied to conduct a systematic motion analysis. Both the variation in the cable tension at the towpoint and the configuration of the cable in the water are investigated. Based on the understanding of the cable and current effects on AUV motion, this article further explores the antitwining maneuvering strategy for the cable-tethered AUV moving in currents. The findings in this work can provide theoretical guidance for the safe operation of the AUV and cable coupling system in the field.


Publication title

IEEE Journal of Oceanic Engineering






Australian Maritime College


Ieee-Inst Electrical Electronics Engineers Inc

Place of publication

445 Hoes Lane, Piscataway, USA, Nj, 08855

Rights statement

Copyright 2020 IEEE Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Repository Status

  • Open

Socio-economic Objectives

Expanding knowledge in engineering

Usage metrics

    University Of Tasmania


    Ref. manager