Fish capture has far-reaching but inadequately assessed implications for marine food webs. At the community level, such effects are typically investigated using dynamic models that rely on partially subjective categorization of species into trophic groups and that mostly overlook the substantial contribution of ontogenetic dietary variation within fish species. Here, we estimate consumption by fish communities at 376 southern Australian sites by applying a recently developed statistical model that predicts diet for individual fish based on their body size and taxonomic identity, with predicted diets then summed to estimate total community consumption. Impacts of fishing and human population density as top-down pressures on shallow reef communities were thereby resolved at fine taxonomic scales. Fishes were estimated to consume 71% more prey biomass in southern Australian no-take marine protected areas (MPAs) relative to fished sites. Consumption of algae and sessile invertebrates was unexpectedly high in MPAs, an outcome not apparent with fish species allocated into pre-defined trophic groups. Extension of this individual size-structured modelling approach provides an opportunity to fill important knowledge gaps in understanding human impacts on marine food webs.
Funding
Australian Research Council
Department of Parks and Wildlife (Western Australia)
Dept of Environment & Natural Resources South Australia
NSW Department of Environment, Climate Change and Water
Parks Victoria
Tasmanian Parks and Wildlife Service
History
Publication title
Marine Ecology - Progress Series
Volume
587
Pagination
175-186
ISSN
0171-8630
Department/School
Institute for Marine and Antarctic Studies
Publisher
Inter-Research
Place of publication
Nordbunte 23, Oldendorf Luhe, Germany, D-21385
Rights statement
Copyright 2018 Inter-Research
Repository Status
Restricted
Socio-economic Objectives
Assessment and management of terrestrial ecosystems