University of Tasmania
Browse

File(s) under permanent embargo

Multi-salt coagulation of soft pitch colloids

journal contribution
posted on 2023-05-26, 08:00 authored by Lee, R, Stack, KR, Richardson, DE, Trevor LewisTrevor Lewis, Garnier, G
The dynamic coagulation of colloidal pitch was quantified under orthokinetic conditions. The effects of single salt, multiple salt and cation valency on the stability of the colloidal pitch were investigated as a function of salt concentration. Critical coagulation concentrations (CCCs) were determined for a range of individual cations. The CCC in the presence of a number of divalent or trivalent cations was investigated to gain an understanding of the effect of multiple salts normally found in industrial systems. Electrostatic destabilisation of wood resin colloids by a single salt is strongly influenced by salt valency (z) and mostly independent of the individual cation (at constant z). Addition of a second cation to solution resulted in a decrease in the CCC for both calcium and aluminium ions in the presence of sodium ions. The decrease in the CCC for the wood resin colloids was non-linear and showed restabilisation of the colloids above the CCC, unlike the effects observed for a single salt. Comparison of the experimental CCC results with the DVLO theory indicates that a higher Hamaker constant than reported for the interaction of abietic acid with talc in water (used here as a model interaction) is needed. This suggests that the aggregation process of the wood resin colloids involves a stronger interaction than abietic acid with talc. Experimental CCC values for divalent and trivalent ions were also lower than those predicted theoretically. To obtain agreement between theory and experimental results, reduced Stern potentials and higher Hamaker constants were required, suggesting specific ion adsorption of the multivalent cations is occurring to reduce surface charge of the colloid.

History

Publication title

Colloids and Surfaces A: Physicochemical and Engineering Aspects

Volume

409

Issue

1

Pagination

74-80

ISSN

0927-7757

Publication status

  • Published

Rights statement

Copyright 2012 Elsevier

Repository Status

  • Restricted

Usage metrics

    University Of Tasmania

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC