University Of Tasmania

File(s) under permanent embargo

Multimaterial 3D printed fluidic device for measuring pharmaceuticals in biological fluids

journal contribution
posted on 2023-05-20, 22:47 authored by Li, F, Macdonald, NP, Rosanne Guijt, Michael BreadmoreMichael Breadmore
Multimaterial 3D printing provides a unique capability for the creation of highly complex integrated devices where complementary functionality is realized using differences in material properties. Using a single and automated print process, microfluidic devices were fabricated containing (i) an optically transparent structure for fluorescence detection, (ii) electrodes for electrokinetic transport, (iii) a primary membrane to remove particulates and macromolecules including proteins, and (iv) a secondary membrane to concentrate small molecule targets. The device was used for the simultaneous extraction and concentration of small molecule pharmaceuticals from urine, which was followed by an on-chip electrophoretic separation of the concentrated targets for quantitative analysis. Owing to the high level of functional integration inside the device, manual handling was minimal and restricted to the introduction of the sample and buffer solutions. The 3D printed sample-in/answer-out device allowed the direct quantification of ampicillin - a small molecule pharmaceutical - in untreated urine within 3 min, down to 2 ppm. These results demonstrate the potential of 3D printing for on-demand fabrication of disposable, functionally integrated devices for low-cost point-of-collection (POC) diagnostics.


Australian Research Council


Publication title

Analytical Chemistry








School of Natural Sciences


Amer Chemical Soc

Place of publication

1155 16Th St, Nw, Washington, USA, Dc, 20036

Rights statement

Copyright 2018 American Chemical Society

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics