University Of Tasmania
Wang Lili et al Health and QoL Outcomes 2017.pdf (457.62 kB)

Multimorbidity and health-related quality of life (HRQoL) in a nationally representative population sample: implications of count versus cluster method for defining multimorbidity on HRQoL

Download (457.62 kB)
journal contribution
posted on 2023-05-19, 01:39 authored by Wang, L, Andrew PalmerAndrew Palmer, Cocker, F, Kristy Sanderson
Background: No universally accepted definition of multimorbidity (MM) exists, and implications of different definitions have not been explored. This study examined the performance of the count and cluster definitions of multimorbidity on the sociodemographic profile and health-related quality of life (HRQoL) in a general population.

Methods: Data were derived from the nationally representative 2007 Australian National Survey of Mental Health and Wellbeing (n = 8841). The HRQoL scores were measured using the Assessment of Quality of Life (AQoL-4D) instrument. The simple count (2+ & 3+ conditions) and hierarchical cluster methods were used to define/identify clusters of multimorbidity. Linear regression was used to assess the associations between HRQoL and multimorbidity as defined by the different methods.

Results: The assessment of multimorbidity, which was defined using the count method, resulting in the prevalence of 26% (MM2+) and 10.1% (MM3+). Statistically significant clusters identified through hierarchical cluster analysis included heart or circulatory conditions (CVD)/arthritis (cluster-1, 9%) and major depressive disorder (MDD)/anxiety (cluster-2, 4%). A sensitivity analysis suggested that the stability of the clusters resulted from hierarchical clustering. The sociodemographic profiles were similar between MM2+, MM3+ and cluster-1, but were different from cluster-2. HRQoL was negatively associated with MM2+ (β: -0.18, SE: -0.01, p < 0.001), MM3+ (β: -0.23, SE: -0.02, p < 0.001), cluster-1 (β: -0.10, SE: 0.01, p < 0.001) and cluster-2 (β: -0.36, SE: 0.01, p < 0.001).

Conclusions: Our findings confirm the existence of an inverse relationship between multimorbidity and HRQoL in the Australian population and indicate that the hierarchical clustering approach is validated when the outcome of interest is HRQoL from this head-to-head comparison. Moreover, a simple count fails to identify if there are specific conditions of interest that are driving poorer HRQoL. Researchers should exercise caution when selecting a definition of multimorbidity because it may significantly influence the study outcomes.


Publication title

Health and Quality of Life Outcomes



Article number









Menzies Institute for Medical Research


BioMed Central Ltd.

Place of publication

United Kingdom

Rights statement

Copyright 2017 The Authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

Repository Status

  • Open

Socio-economic Objectives

Evaluation of health and support services not elsewhere classified

Usage metrics

    University Of Tasmania