University Of Tasmania

File(s) under permanent embargo

Multistacking from Two Sample Streams in Nonaqueous Microchip Electrophoresis

journal contribution
posted on 2023-05-19, 02:35 authored by Thang, LY, See, HH, Joselito Quirino
The translation of stacking techniques used in capillary electrophoresis (CE) to microchip CE (MCE) in order to improve concentration sensitivity is an important area of study. The success in stacking relies on the generation and control of the stacking boundaries which is a challenge in MCE because the manipulation of solutions is not as straightforward as in CE with a single channel. Here, a simple and rapid online sample concentration (stacking strategy) in a battery operated nonaqueous MCE device with a commercially available double T-junction glass chip is presented. A multistacking approach was developed in order to circumvent the issues for stacking in nonaqueous MCE. The cationic analytes from the two loading channels were injected under field-enhanced conditions and were focused by micelle-to-solvent stacking. This was achieved by the application of high electric fields along the two loading channels and a low electric field in the separation channel, with one ground electrode in the reservoir closest to the junction. At the junction, the stacked zones were restacked under field-enhanced conditions and then injected into the separation channels. The multistacking was verified under a fluorescence microscope using Rhodamine 6G as the analyte, revealing a sensitivity enhancement factor (SEF) of 110. The stacking approach was also implemented in the nonaqueous MCE with contactless conductivity detection of the anticancer drug tamoxifen as well as its metabolites. The multistacking and analysis time was 40 and 110 s, respectively, the limit of detections was from 10 to 35 ng/mL and the SEFs were 20 to 50. The method was able to quantify the target analytes from breast cancer patients.


Australian Research Council


Publication title

Analytical Chemistry










School of Natural Sciences


American Chemical Society

Place of publication

United States

Rights statement

Copyright 2016 American Chemical Society

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania