University of Tasmania
Browse

File(s) under permanent embargo

Muscle insulin resistance resulting from impaired microvascular insulin sensitivity in Sprague Dawley rats

journal contribution
posted on 2023-05-17, 17:43 authored by Dino PremilovacDino Premilovac, Bradley, EA, Ng, HLH, Stephen RichardsStephen Richards, Stephen RattiganStephen Rattigan, Michelle Keske

Aims: Enhanced microvascular perfusion of skeletal muscle is important for nutrient exchange and contributes ~40 insulin-mediated muscle glucose disposal. High fat-fed (36 fat wt./wt.) rats are a commonly used model of insulin-resistance that exhibit impairment of insulin-mediated microvascular recruitment and muscle glucose uptake, which is accompanied by myocyte insulin-resistance. Distinguishing the contribution of impaired microvascular recruitment and impaired insulin action in the myocyte to decreased muscle glucose uptake in these high-fat models is difficult. It is unclear whether microvascular and myocyte insulin-resistance develop simultaneously. To assess this, we used a rat diet model with a moderate increase (two-fold) in dietary fat.

Methods and results: Sprague Dawley rats fed normal (4.8 fat wt./wt., 5FD) or high (9.0 fat wt./wt., 9FD) fat diets for 4 weeks were subject to euglycaemic hyperinsulinemic clamp (10 mU/min/kg insulin or saline) or isolated hindlimb perfusion (1.5 or 15 nM insulin or saline). Body weight, epididymal fat mass, and fasting plasma glucose were unaffected by diet. Fasting plasma insulin and non-esterified fatty acid concentrations were significantly elevated in 9FD. Glucose infusion rate and muscle glucose uptake were significantly impaired during insulin clamps in 9FD. Insulin-stimulated microvascular recruitment was significantly blunted in 9FD. Insulin-mediated muscle glucose uptake between 5FD and 9FD were not different during hindlimb perfusion.

Conclusions: Impaired insulin-mediated muscle glucose uptake in vivo can be the direct result of reduced microvascular blood flow responses to insulin, and can result from small (two-fold) increases in dietary fat. Thus, microvascular insulin-resistance can occur independently to the development of myocyte insulin-resistance.

History

Publication title

Cardiovascular Research

Volume

98

Pagination

28-36

ISSN

0008-6363

Department/School

Menzies Institute for Medical Research

Publisher

Oxford University Press

Place of publication

United Kingdom

Rights statement

Copyright 2013 The Author

Repository Status

  • Restricted

Socio-economic Objectives

Clinical health not elsewhere classified

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC