Near-real time detection of beetle infestation in pine forests using MODIS data
journal contribution
posted on 2023-05-18, 01:34authored byAnees, A, Jagannath Aryal
This paper considers near-real time detection of beetle infestation in North American pine forests using MODIS 8-days 500 m data. Two methods are considered, both using a single time series for detection of beetle infestation by analyzing the statistics of the trend component of the signal. The first method estimates the trend component of the vegetation index time series by fitting an underlying triply modulated cosine model over a sliding window, using nonlinear least squares (NLS), and the second method uses a T-point moving average finite impulse response (FIR) filter. Both the methods perform well and show similar performance on simulated datasets. The methods are also tested on many difference and ratio-indices of a real-world dataset with change and no-change examples taken from the Rocky Mountain region of the United States and of British Columbia in Canada. The results suggest that both the methods detect beetle infestation reliably in almost all the vegetation index datasets. However, the model-based method (NLS-based) performs better in terms of the detection delay. Red Green Index (RGI), when used with the model-based method, provides the best tradeoff between the detection delay and accuracy. Furthermore, 90%, 50%, and 25% cross-validations are also performed for the threshold selection on RGI dataset, and it is shown that the selected threshold works well on the test data. In the end, it is also shown that the model-based method outperforms a recently published method for near-real time disturbance detection in MODIS data, in both accuracy and detection delay.
History
Publication title
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing