The mechanisms that underlie thermal tolerance in aquatic ectotherms remain unresolved. Triploid fish have been reported to exhibit lower thermal tolerance than diploids, offering a potential model organism to better understand the physiological drivers of thermal tolerance. Here, we compared triploid and diploid juvenile Atlantic salmon (Salmo salar) in freshwater to investigate the proposed link between aerobic capacity and thermal tolerance. We measured specific growth rates (SGR) and resting (aerobic) metabolic rates (RMR) in freshwater at 3, 7 and 9 weeks of acclimation to either 10, 14 or 18°C. Additionally, maximum metabolic rates (MMR) were measured at 3 and 7 weeks of acclimation, and critical thermal maxima (CTmax) were measured at 9 weeks. Mass, SGR, and RMR differed between ploidies across all temperatures at the beginning of the acclimation period, but all three metrics converged between ploidies by week 7. Aerobic scope (MMR – RMR) remained consistent across ploidies, acclimation temperatures, and time. At 9 weeks, CTmax was independent of ploidy, but correlated positively with acclimation temperature despite the similar aerobic scope between acclimation groups. Our findings suggest that acute thermal tolerance is not modulated by aerobic scope, and the altered genome of triploid Atlantic salmon does not translate to reduced thermal tolerance of juvenile fish in freshwater.
History
Publication title
Journal of Experimental Biology
Volume
221
Article number
jeb.166975
Number
jeb.166975
Pagination
1-9
ISSN
0022-0949
Department/School
Institute for Marine and Antarctic Studies
Publisher
Company Of Biologists Ltd
Place of publication
Bidder Building Cambridge Commercial Park Cowley Rd, Cambridge, England, Cambs, Cb4 4Dl