Neural remodelling in spiny lobster larvae is characterized by broad neuropeptide suppression
Neuropeptides are ancient endocrine components which have evolved to regulate many aspects of biology across the animal kingdom including behaviour, development and metabolism. To supplement current knowledge, we have utilized a transcriptome series describing larval development in the ornate spiny lobster, Panulirus ornatus. The biology of this animal has been leveraged to provide insights into the roles of molting, metamorphosis and metabolism across the neuropeptide family. We report an extensive list of neuropeptides across three distinct life phases of the animal. We show distinct groups of neuropeptides with differential expression between larval phases, indicating phase-specific roles for these peptides. For selected neuropeptides, we describe and discuss expression profiles throughout larval development and report predicted peptide cleavage sites and mature peptide sequences. We also report the neuropeptide nesfatin for the first time in a crustacean, and report secondary peptide products with a level of evolutionary conservation similar to the conventional mature peptide nesfatin-1, indicating a conserved role in these secondary products which are widely regarded as biologically inactive. In addition, we report a trend of downregulation in the neuropeptides as the animal undergoes extensive neural remodelling in fulfillment of metamorphosis. We suggest that this downregulation in neuropeptides relates to the brief, yet dramatic changes in morphology experienced by the central nervous system in the process of metamorphosis.
Funding
Australian Research Council
UTAS Nexus Aquasciences Pty Ltd
History
Publication title
General and Comparative EndocrinologyVolume
294Article number
113496Number
113496Pagination
1-10ISSN
0016-6480Department/School
Institute for Marine and Antarctic StudiesPublisher
Academic Press Inc Elsevier SciencePlace of publication
525 B St, Ste 1900, San Diego, USA, Ca, 92101-4495Rights statement
Copyright 2020 Elsevier Inc.Repository Status
- Restricted