Neuronal apoptosis mediated by inhibition of intracellular cholesterol transport: Microarray and proteomics analyses in cultured murine cortical neurons
Version 2 2024-09-17, 02:06Version 2 2024-09-17, 02:06
Version 1 2023-05-17, 01:43Version 1 2023-05-17, 01:43
journal contribution
posted on 2024-09-17, 02:06authored byCH Koh, ZF Peng, K Ou, A Melendez, J Manikandan, RZ Qi, NS Cheung
Studies suggest that cholesterol imbalance in the brain might be related to the development of neurological disorders. UI8666A is a well-known amphiphile which inhibits intracellular cholesterol transport in treated cells. We have previously shown that UI8666A leads to apoptosis and cholesterol accumulation in primary cortical neurons, which is associated with activation of caspases and calpains, hyperphosphorylation of tau, and increased oxidative stress markers. However, the mechanisms involved in UI8666A-mediated apoptosis remain unknown. In this report, we sought to gain an insight into the molecular processes contributing to the neuronal apoptosis induced by UI8666A. The microarray approach was used in conjunction with proteomics techniques to identify specific proteins which may serve as signature biomarkers during UI8666A treatment. Eleven differentially expressed proteins were correlated at the gene expression level in a time-dependent manner. These proteins have been shown to play a role in lipid metabolism and transport, responses to cell death, protein folding and trafficking, and regulation of transcription. The identification of these differentially expressed proteins might provide a clue to decipher the intracellular biochemical changes during UI8666A-mediated neuronal apoptosis. Our results provide, for the first time, a combined microarray and proteomics analysis of neuronal apoptosis mediated by inhibition of intracellular cholesterol transport. This new insight may greatly facilitate the study of neurodegenerative diseases.
History
Publication title
Journal of Cellular Physiology
Volume
211
Issue
1
Pagination
63-87
ISSN
0021-9541
Department/School
Menzies Institute for Medical Research
Publisher
Wiley-Liss
Publication status
Published
Place of publication
Div John Wiley & Sons Inc, 605 Third Ave, New York, USA, Ny, 10158-0012