University of Tasmania
Browse

Numerical assessment of roll motion characteristics and damping coefficient of a ship

Download (5.97 MB)
journal contribution
posted on 2023-05-19, 21:47 authored by Kianejad, SS, Lee, J, Liu, Y, Hossein EnshaeiHossein Enshaei
Accurate calculation of the roll damping moment at resonance condition is essential for roll motion prediction. Because at the resonance condition, the moment of inertia counteracts restoring moment and only the damping moment resists increase in the roll angle. There are various methods to calculate the roll damping moment which are based on potential flow theory. These methods have limitations to taking into account the viscous effects in estimating the roll motion, while, CFD as a numerical method is capable of considering the viscous effects. In this study, a CFD method based on a harmonic excited roll motion (HERM) technique is used to compute the roll motion and the roll damping moment of a containership’s model in different conditions. The influence of excitation frequency, forward speed and degrees of freedom at beam-sea and oblique-sea realizations are considered in estimating the roll damping coefficients. The results are validated against model tests, where a good agreement is found.

History

Publication title

Journal of Marine Science and Engineering

Volume

6

Article number

101

Number

101

Pagination

1-19

ISSN

2077-1312

Department/School

Australian Maritime College

Publisher

MDPIAG

Place of publication

Switzerland

Rights statement

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) http://creativecommons.org/licenses/by/4.0/

Repository Status

  • Open

Socio-economic Objectives

International sea freight transport (excl. live animals, food products and liquefied gas); Expanding knowledge in engineering

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC