File(s) not publicly available
One equation fits overkill: why allometry underpins both prehistoric and modern body size-biased extinctions
The higher extinction proneness of large bodied vertebrates, both in the past and during the modern global biodiversity crisis, has a fundamental explanation in allometry: maximal population increase is scaled to body mass (W) by W -0.25, whilst generation length scales by W 0.25. Populations of any sized vertebrate can persist if their populations experience the same proportional reduction each generation, but if this chronic mortality occurs at an annual rate, then smaller short-lived animals are able to survive whilst larger animals are driven inexorably to extinction. On this basis, our interpretation of the empirical body mass-extinction risk evidence for both the Late Pleistocene extinctions and the contemporary biodiversity crisis is that human impacts are sufficiently rapid and ubiquitous to outstrip the capacity of natural selection in most large taxa, upsetting the highly evolved life history trade-offs that permit the maintenance of a diverse assemblage of different sized animals. © The Society of Population Ecology and Springer-Verlag Tokyo 2005.
History
Publication title
Population EcologyVolume
47Pagination
137-141ISSN
1438-3896Department/School
School of Natural SciencesPublisher
SpringerPlace of publication
GermanyRepository Status
- Restricted
Socio-economic Objectives
Social impacts of climate change and variabilityUsage metrics
Categories
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC