University of Tasmania
Browse

File(s) under permanent embargo

Ongoing deformation of Antarctica following recent Great Earthquakes

journal contribution
posted on 2023-05-18, 17:16 authored by Matt KingMatt King, Santamaria-Gomez, A
Antarctica's secular motion is thought to be almost everywhere governed by horizontal rigid plate rotation plus three-dimensional deformations due to past and present changes in ice ocean loading, known as glacial isostatic adjustment (GIA). We use geodetic data to investigate deformation following the 1998 M ~8.2 Antarctic intraplate Earthquake and show sustained three-dimensional deformation along East Antarctica's coastline, 600 km from the rupture location. Using a model of viscoelastic deformation, we are able to match observed northward velocity changes, and either east or height, but not all three directions simultaneously, apparently partly due to lateral variations in mantle rheology. Our modeling predicts that much of Antarctica may still be deforming, with further deformation possible from the 2004 M 8 Macquarie Ridge Earthquake. This previously unconsidered mode of Antarctic deformation affects geodetic estimates of plate motion and GIA; its viscous nature raises the prospect of further present-day deformation due to earlier Great Earthquakes.

Funding

Australian Research Council

History

Publication title

Geophysical Research Letters

Volume

43

Issue

5

Pagination

1918-1927

ISSN

0094-8276

Department/School

School of Geography, Planning and Spatial Sciences

Publisher

Amer Geophysical Union

Place of publication

2000 Florida Ave Nw, Washington, USA, Dc, 20009

Rights statement

Copyright 2016 American Geophysical Union

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the earth sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC