Prudence analysis (PA) is a relatively new, practical and highly innovative approach to solving the problem of brittleness in knowledge based system (KBS) development. PA is essentially an online validation approach where as each situation or case is presented to the KBS for inferencing the result is simultaneously validated. Therefore, instead of the system simply providing a conclusion, it also pro- vides a warning when the validation fails. Previous studies have shown that a modification to multiple classification ripple-down rules (MCRDR) referred to as rated MCRDR (RM) has been able to achieve strong and flexible results in simulated domains with artificial data sets. This paper presents a study into the effectiveness of RM in an eHealth document monitoring and classification domain using human expertise. Additionally, this paper also investigates what affect PA has when the KBS developer relied entirely on the warnings for maintenance. Results indicate that the system is surprisingly robust even when warning accuracy is allowed to drop quite low. This study of a previously little touched area provides a strong indication of the potential for future knowledge based system development.
History
Publication title
Expert Systems With Applications
Volume
38
Issue
9
Pagination
10959-10965
ISSN
0957-4174
Department/School
School of Information and Communication Technology
Publisher
Pergamon-Elsevier Science Ltd
Place of publication
The Boulevard, Langford Lane, Kidlington, Oxford, England, Ox5 1Gb
Rights statement
The definitive version is available at http://www.sciencedirect.com
Repository Status
Restricted
Socio-economic Objectives
Information systems, technologies and services not elsewhere classified