Understanding the consequences of fuel release and fire accident is an important aspect of the design and construction of buildings and infrastructures. Particularly, an increasing number of catastrophic consequences of recent fire accidents in high-rise buildings has led to the demand for a rigorous and holistic approach for infrastructure fire safety analysis and performance evaluation. The current study proposes a framework for liquefied petroleum gas heat release simulations and modelling the visibility of evacuees on the egress path during a fire event using efficient computational fluid dynamics (CFD) model. The framework consists of scenario modelling, optimised smoke detector layout, mechanical smoke extraction system, and visibility analysis. The CFD simulation is first validated using experimental data demonstrating a very good agreement. A case study for detector layout is then considered, showing the proposed approach increases the visibility of the egress path along the corridor of a building during fuel release and fire accident. The study will offer an effective platform for modelling fire risk and assessing the performance of fire safety mechanisms in buildings which can be also beneficial to enhance urban infrastructures safety.
History
Publication title
Process Safety and Environmental Protection
Volume
149
Pagination
508-517
ISSN
0957-5820
Department/School
Australian Maritime College
Publisher
Inst Chemical Engineers
Place of publication
165-189 Railway Terrace, Davis Bldg, Rugby, England, Cv21 3Br
Rights statement
Copyright 2020 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
Repository Status
Restricted
Socio-economic Objectives
Energy efficiency not elsewhere classified; Expanding knowledge in built environment and design