University of Tasmania
Browse

File(s) under permanent embargo

Optimum resistive type fault current limiter: An efficient solution to achieve maximum fault ride-through capability of fixed-speed wind turbines during symmetrical and asymmetrical grid faults

journal contribution
posted on 2023-05-19, 01:57 authored by Seyedbehzad Naderi, Michael NegnevitskyMichael Negnevitsky, Jalilian, A, Hagh, MT, Muttaqi, KM
This paper proposes an optimum resistive type fault current limiter (OR-FCL) as an efficient solution to achieve maximum fault ride-through (FRT) capability of fixed-speed wind turbines (FSWT) during various grid faults. In this paper, a dedicated control circuit is designed for the OR-FCL that enables it to insert an optimum value of resistance in the FSWT's fault current's path for improving transient behavior of the FSWT. The optimum resistance value depends on fault location and prefault active power. The control circuit of the proposed OR-FCL is capable of calculating the optimum resistance value for all the prefault conditions. By using the proposed control circuit, the FSWT can achieve its maximum FRT capability during symmetrical and asymmetrical faults, even at zero grid voltage. Analysis is provided in detail to highlight the process of calculating the optimum resistance of the OR-FCL. Moreover, the effect of the resistance value of the OR-FCL on the FRT behavior of FSWT is investigated. To show the efficiency of the proposed OR-FCL, its performance during various operation conditions of the FSWT is studied. It can be proved that each operation condition needs its own optimum resistance value, which can be obtained by using the proposed control circuit during the fault to achieve the maximum FRT capability of the FSWT. Comprehensive sets of simulations are carried out in PSCAD/EMTDC software and the results prove the effectiveness of the proposed approach.

History

Publication title

IEEE Transactions on Industry Applications

Volume

53

Pagination

538-548

ISSN

0093-9994

Department/School

School of Engineering

Publisher

Ieee-Inst Electrical Electronics Engineers Inc

Place of publication

445 Hoes Lane, Piscataway, USA, Nj, 08855

Rights statement

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

Repository Status

  • Restricted

Socio-economic Objectives

Energy services and utilities