University Of Tasmania
154382 - Orchard microclimate tree water uptake.pdf (2.67 MB)

Orchard microclimate, tree water uptake and sweet cherry fruit quality under protected cropping

Download (2.67 MB)
journal contribution
posted on 2023-05-21, 15:07 authored by Cameron StoneCameron Stone, Dugald CloseDugald Close, Sally BoundSally Bound, Stephen CorkreyStephen Corkrey
Protected cropping systems (PCS) de-risk adverse climatic effects in intensive horticultural production but alter the growing environment. The objectives of this study were to investigate the effects of modern, commercial-scale PCS on sweet cherry orchard microclimate, tree water uptake and fruit quality. Sap flow sensors and weather stations were positioned at four locations under a 21 ha PCS at varying elevations (125, 114, 111, 102 m above sea level) and distances from the block boundary (105, 75, 60 or 50 m, referred to hereafter as Locations 1 to 4, respectively). Generalised additive models (GAMs) were used to predict the effect of individual climate parameters (temperature, relative humidity, solar radiation and wind speed) on tree sap flow at each of the four locations. Average and maximum temperatures and average minimum relative humidity (RH) were higher (15.9 Celsius degree, 26.1 Celsius degree and 49.0%) at locations with higher elevations and located further from the PCS boundary (locations 1 and 2) in contrast to locations at lower elevations and closer proximity to the PCS boundary (locations 3 and 4) (15.4 Celsius degree, 24.6 Celsius degree and 48.1%). Predicted sap flow was strongly correlated (r2 = 0.92) with time across the four locations under the PCS. GAMS modelling indicated that the hourly water uptake by trees within close proximity to the block boundary (locations 3 and 4) responded with greater intensity to increases in temperature and reductions in relative humidity, taking up on average 0.15 L h-1 (at temperatures >30 Celsius degree) and 0.08 h-1 (at RH<50%), respectively, in contrast to trees further under the PCS (locations 1 and 2) where average tree water uptake was 0.08 and 0.04 h-1 at temperatures >30 Celsius degree and RH<50%, respectively. Highest average predicted hourly tree sap flow was associated with high wind speeds (0.67 h-1) and low relative humidity levels (0.61 h-1). Fruit harvested from locations further from the PCS boundary had significantly higher dry matter content (18.2%), total soluble solids (17.8%) and compression firmness (311.3 g mm-1) in contrast to fruit closer to the PCS boundaries (16.1%, 15.7% and 258.3 g mm-1). This study provides greater understanding of the effects of PCS on microclimate and consequences for tree water uptake and fruit quality.


Horticulture Innovation Australia


Publication title

Frontiers in Plant Science



Article number









Tasmanian Institute of Agriculture (TIA)


Frontiers Research Foundation

Place of publication


Rights statement

© 2022 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License,

Repository Status

  • Open

Socio-economic Objectives

Stone fruit (excl. avocado)