Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite
journal contribution
posted on 2023-05-17, 14:51authored byVeksler, IV, Dorfman, AM, Dulski, P, Vadim Kamenetsky, Leonid Danyushevsky, Jeffries, T, Dingwell, DB
Liquid–liquid partitioning of 42 elements between synthetic silicate melts and immiscible fluoride, chloride, carbonate, phosphate and sulfate liquids was studied at temperatures of 650–1100 oC, pressures 72–100 MPa, with 0–11 wt.% H2O. One series of experiments was performed in a rotating internally-heated autoclave where separation of the immiscible liquids was assisted by centrifugal forces. An analogous series of experiments was done in static rapid-quench cold-seal pressure vessels. The experimentally determined liquid–liquid distribution coefficients (D’s) vary over several orders of magnitude, as a result of variable Coulombic interactions between cations and anions. For alkaline, alkaline earth and rare earth elements ther is a strong and systematic dependence of the liquid/liquid D values on the ionic potential Z/r for all the examined systems. In contrast, highly charged cations (e.g., HFSE) show no systematic relationships between the D’s and Z/r. New experimental constraints on the carbonate/silicate liquid–liquid D values presented here confirm that rare metals such as Nb, Zr, REE, Th and U concentrate in silicate liquids, and therefore carbonatites that carry economical rare metal mineralization are not likely to have formed by liquid immiscibility. The comparison between experimentally-determined carbonate– silicate liquid–liquid D values and bulk-rock natrocarbonatite vs. nephelinite compositions at the Oldoinyo Lengai in Tanzania reveals significant discrepancies for Cs, Rb, Ba, Be, Zn, heavy REE, Ti, Mo and W, thus rendering a simple, one-stage immiscibility model for Oldoinyo Lengai questionable.
Funding
Australian Research Council
AMIRA International Ltd
ARC C of E Industry Partner $ to be allocated
Anglo American Exploration Philippines Inc
AngloGold Ashanti Australia Limited
Australian National University
BHP Billiton Ltd
Barrick (Australia Pacific) PTY Limited
CSIRO Earth Science & Resource Engineering
Mineral Resources Tasmania
Minerals Council of Australia
Newcrest Mining Limited
Newmont Australia Ltd
Oz Minerals Australia Limited
Rio Tinto Exploration
St Barbara Limited
Teck Cominco Limited
University of Melbourne
University of Queensland
Zinifex Australia Ltd
History
Publication title
Geochimica et Cosmochimica Acta
Volume
79
Issue
February
Pagination
20-40
ISSN
0016-7037
Department/School
School of Natural Sciences
Publisher
Pergamon-Elsevier Science Ltd
Place of publication
The Blv, Langford Ln, Kidlington, Oxford OX51GB UK