University Of Tasmania

File(s) not publicly available

Peridotite Melting at 1Gpa: Reversal Experiments on Partial Melt Compositions Produced by Peridotite-Basalt Sandwich Experiments

journal contribution
posted on 2023-05-16, 13:17 authored by Trevor FalloonTrevor Falloon, Leonid Danyushevsky, Green, DH
One of the goals of igneous petrology is to use the subtle and more obvious differences in the geochemistry of primitive basalts to place constraints on mantle composition, melting conditions and dynamics of mantle upwelling and melt extraction. For this goal to be achieved, our first-order understanding of mantle melting must be refined by high-quality, systematic data on correlated melt and residual phase compositions under known pressures and temperatures. Discrepancies in earlier data on melt compositions from a fertile mantle composition [MORB (mid-ocean ridge basalt) Pyrolite mg-number 87] and refractory lherzolite (Tinaquillo Lherzolite mg-number 90) are resolved here. Errors in earlier data resulted from drift of W/Re thermocouples at 1 GPa and access of water, lowering liquidus temperatures by 30-80°C. We demonstrate the suitability of the 'sandwich' technique for determining the compositions of multiphase-saturated liquids in lherzolite, provided fine-grained sintered oxide mixes are used as the peridotite starting materials, and the changes in bulk composition are considered. Compositions of liquids in equilibrium with lherzolitic to harzburgitic residue at 1 GPa, 1300-1450°C in the two lherzolite compositions are reported. Melt compositions are olivine + hypersthene-normative (olivine tholeiites) with the more refractory composition producing a lower melt fraction (7-8% at 1300°C) compared with the model MORB source (18-20% at 1300°C).


Publication title

Journal of Petrology










School of Natural Sciences


Oxford university Press

Place of publication

Oxford, England

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the earth sciences

Usage metrics

    University Of Tasmania