Peroxisomal malate dehydrogenase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release
journal contribution
posted on 2023-05-18, 11:20authored byCousins, AB, Pracharoenwattana, I, Zhou, W, Steven SmithSteven Smith, Badger, MR
Peroxisomes are important for recycling carbon and nitrogen that would otherwise be lost during photorespiration. The reduction of hydroxypyruvate to glycerate catalyzed by hydroxypyruvate reductase (HPR) in the peroxisomes is thought to be facilitated by the production of NADH by peroxisomal malate dehydrogenase (PMDH). PMDH, which is encoded by two genes in Arabidopsis (Arabidopsis thaliana), reduces NAD+ to NADH via the oxidation of malate supplied from the cytoplasm to oxaloacetate. A double mutant lacking the expression of both PMDH genes was viable in air and had rates of photosynthesis only slightly lower than in the wild type. This is in contrast to other photorespiratory mutants, which have severely reduced rates of photosynthesis and require high CO2 to grow. The pmdh mutant had a higher O2-dependent CO2 compensation point than the wild type, implying that either Rubisco specificity had changed or that the rate of CO2 released per Rubisco oxygenation was increased in the pmdh plants. Rates of gross O2 evolution and uptake were similar in the pmdh and wild-type plants, indicating that chloroplast linear electron transport and photorespiratory O2 uptake were similar between genotypes. The CO2 postillumination burst and the rate of CO2 released during photorespiration were both greater in the pmdh mutant compared with the wild type, suggesting that the ratio of photorespiratory CO2 release to Rubisco oxygenation was altered in the pmdh mutant. Without PMDH in the peroxisome, the CO2 released per Rubisco oxygenation reaction can be increased by over 50%. In summary, PMDH is essential for maintaining optimal rates of photorespiration in air; however, in its absence, significant rates of photorespiration are still possible, indicating that there are additional mechanisms for supplying reductant to the peroxisomal HPR reaction or that the HPR reaction is altogether circumvented.
History
Publication title
Plant Physiology
Volume
148
Pagination
786-795
ISSN
0032-0889
Department/School
School of Natural Sciences
Publisher
Amer Soc Plant Biologists
Place of publication
15501 Monona Drive, Rockville, USA, Md, 20855
Rights statement
Copyright 2008 American Society of Plant Biologists