University of Tasmania
Browse

File(s) under permanent embargo

Phosphorus diffused LPCVD polysilicon passivated contacts with in-situ low pressure oxidation

journal contribution
posted on 2023-05-21, 09:54 authored by Fong, KC, Ko, TC, Liang, WS, Chong, TK, Ernst, M, Walter, D, Stocks, M, Evan FranklinEvan Franklin, McIntosh, K, Blakers, A

As silicon photovoltaic technology advances, charge carrier losses at the contacted interfaces of the silicon absorber are coming to dominate power conversion efficiency. The so-called passivated contact, which provides selective charge-carrier extraction while simultaneously reducing interface recombination, is thus of significant interest for next-generation silicon solar cells. However, achieving both low recombination and low resistance to charge carrier extraction has proven challenging. Here, we present a passivated contact technology based on polysilicon deposited using low pressure chemical vapour deposition (LPCVD) over an ultra-thin silicon dioxide layer, which achieves an excellent surface passivation with implied open-circuit voltage of 735 mV, a recombination prefactor below 1 fA cm−2 and contact resistivity below 1 mΩ cm2.

Key to this technology is the deposition of an ultra-thin silicon dioxide interlayer under high temperature and low pressure condition, performed in-situ within a single process with the polysilicon deposition. Additionally, the passivating contact structure maintains its electronic properties at temperatures of up to 900 °C and is compatible with existing industrial processes. The presented work therefore represents a significant advancement in industrially-applicable passivated contact technology.

History

Publication title

Solar Energy Materials & Solar Cells

Volume

186

Pagination

236-242

ISSN

0927-0248

Department/School

School of Engineering

Publisher

Elsevier Science Bv

Place of publication

Po Box 211, Amsterdam, Netherlands, 1000 Ae

Rights statement

© 2018 Elsevier B.V.

Repository Status

  • Restricted

Socio-economic Objectives

Solar-photovoltaic energy

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC