University of Tasmania
Browse

File(s) under permanent embargo

Phytoplankton morphology controls on marine snow sinking velocity

journal contribution
posted on 2023-05-18, 07:56 authored by Emmanuel LaurenceauEmmanuel Laurenceau, Trull, TW, Diana Davies, De La Rocha, CL, Blain, S
During the second KErguelen Ocean and Plateau compared Study (KEOPS2) in October-November 2011, marine snow was formed in roller tanks by physical aggregation of phytoplankton assemblages sampled at 6 stations over and downstream of the Kerguelen Plateau. Sinking velocities, morphology, bulk composition (transparent exopolymer particles, biogenic silica, particulate organic carbon), and phytoplankton contents were measured individually on 66 aggregates to identify controls on sinking velocities. Equivalent spherical diameters (ESD) ranged from 1 to 12 mm, and the particle aspect ratios, Corey shape factors, and fractal dimensions (DF1 = 1.5, DF2 = 1.8) were close to those of smaller natural aggregates (0.2 to 1.5 mm) collected in polyacrylamide gel-filled sediment traps (DF1 = 1.2, DF2 = 1.9). Sinking velocities ranged between 13 and 260 m d-1, and were correlated with aggregate size only when considering individually the experiments conducted at each station, suggesting that a site-dependent control prevailed over the general influence of size. Variation in dominant diatom morphologies among the sites (classified as small spine-forming or chain without spines) appeared to be a determinant parameter influencing the sinking velocity (SV [m d-1] = 168 - 1.48 × (% small spine-forming cells), r2 = 0.98), possibly via a control on species-specific coagulation efficiency affecting particle structure and excess density. Our results emphasize the importance of ecological considerations over that of simple compositional perspectives in the control of particle formation, and in accurate parameterizations of marine snow sinking velocities that are essential to predictions of biological carbon sequestration.

History

Publication title

Marine Ecology Progress Series

Volume

520

Pagination

35-56

ISSN

0171-8630

Department/School

Institute for Marine and Antarctic Studies

Publisher

Inter-Research

Place of publication

Nordbunte 23, Oldendorf Luhe, Germany, D-21385

Rights statement

Copyright 2015 Marine Ecology Progress Series

Repository Status

  • Restricted

Socio-economic Objectives

Antarctic and Southern Ocean oceanic processes

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC