Picrites from the emeishan large Igneous Province, SW China: A compositional continuum in primitive magmas and their respective mantle sources
journal contribution
posted on 2023-05-17, 14:51 authored by Vadim Kamenetsky, Chung, S, Maya KamenetskyMaya Kamenetsky, Kuzmin, DVFlood basalts are one of the remaining enigmas in global mantle petrology. They come in enormous quantities of up to 10. 6 km. 3 of mantle-derived melt, and they erupt in rather short time intervals of only a few million years. Throughout geological history, all continents have been periodically flooded by dominantly basaltic and rare picritic magmas that can differ widely within the same province in terms of their major element (e.g. high- and low-Ti series), trace element, and radiogenic isotope compositions, suggesting significant compositional heterogeneity within the mantle source regions tapped. In this study of the Late Permian Emeishan large igneous province (ELIP) in SW China picrite lavas from thick stratigraphic successions at Binchuan and Yongsheng represent the low-Ti and high-Ti 'classic' end-members of continental flood basalt magmatism, respectively. This study focuses on the petrochemical variability of the Emeishan magmas, and the genetic links between the suites and their respective mantle sources, based upon estimates of the chemical compositions of the primary melts represented by homogenized melt inclusions hosted by exceptionally primitive olivine (up to 92 mol % Fo in both suites) and Cr-spinel (Cr# 64-72 mol % in Binchuan and 65-80 mol % in Yongsheng) phenocrysts. The average compositions of the melt inclusions and their overall chemical variability, together with the presence of picrites in the province (e.g. Lijiang and Dali localities) with compositions intermediate between the low- and high-Ti end-members, suggest that numerous parental magma batches contributed to a diverse spectrum of more differentiated basaltic magmas within the ELIP. The end-member and intermediate magma compositions are confirmed by the compositions of phenocrysts (Ni and Mn abundances in olivine, Ti abundances in Cr-spinel and clinopyroxene, and trace element abundances in clinopyroxene). The end-member melt and phenocryst compositions (e.g. Gd/Yb in bulk-rocks, melt inclusions and clinopyroxene and Ni-Mn systematics in olivine) suggest a peridotite and garnet pyroxenite mantle source for the low- and high-Ti end-members, respectively. The Sr and Nd isotopic compositions of the two end-member magmas are similar [. 87Sr/. 86Sr. i ∼0·7045; e{open}Nd(t) ∼ +1·7] and are considered to reflect a source in the subcontinental lithospheric mantle rather than the convective asthenosphere or a deep mantle 'plume'. © The Author 2012. Published by Oxford University Press. All rights reserved.
Funding
Australian Research Council
History
Publication title
Journal of PetrologyVolume
53Issue
10Pagination
2095-2113ISSN
0022-3530Department/School
School of Natural SciencesPublisher
Oxford Univ PressPlace of publication
Great Clarendon St, Oxford, England, OX2 6DPRights statement
Copyright The Author 2012. Published by Oxford University Press.Repository Status
- Restricted
Socio-economic Objectives
Expanding knowledge in the earth sciencesUsage metrics
Categories
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC