Century-long land-use practices have a profound impact on soil physical and chemical properties, with direct implications for soil health and agricultural sustainability. This study aimed to assess the effects of four contrasting land uses—remnant vegetation, pasture, cultivated areas, and loafing areas—on the physical and chemical properties of Red Ferrosols in the Toowoomba region, Queensland, Australia. Soil samples were collected from upper and lower slope positions for each land use. Physical properties, including bulk density, porosity, water retention, and permeability, as well as chemical properties such as organic carbon, nitrogen, phosphorus, and potassium, were analysed. The results showed that remnant vegetation preserved the most favourable soil conditions, with lower bulk density, higher porosity, and greater water retention. Cultivated areas exhibited significant soil degradation, marked by compaction, reduced infiltration, and depleted organic matter. Loafing areas displayed localised nutrient enrichment but higher compaction due to livestock trampling. Pastures maintained intermediate conditions, retaining some beneficial soil characteristics. These findings emphasise the critical need for sustainable land management strategies to protect soil structure and function, supporting the long-term productivity and resilience of Red Ferrosols.<p></p>
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).