Modelling depth of long-term pitting corrosion is of interest for engineers in predicting the structural longevity of ocean infrastructures. Conventional models demonstrate poor quality in predicting the long-term pitting corrosion depth. Recently developed phenomenological models provide a strong understanding of the pitting process however they have limited engineering applications. In this study, a novel probabilistic model is developed for predicting the long-term pitting corrosion depth of steel structures in marine environment using Bayesian Network. The proposed Bayesian Network model combines an understanding of corrosion phenomenological model and empirical model calibrated using real-world data. A case study, which exemplifies the application of methodology to predict the pit depth of structural steel in long-term marine environment, is presented. The result shows that the proposed methodology succeeds in predicting the time dependent, long-term anaerobic pitting corrosion depth of structural steel in different environmental and operational conditions.
Funding
University of Tasmania
History
Publication title
Journal of Offshore Mechanics and Arctic Engineering
Volume
139
Issue
5
Article number
051402
Number
051402
Pagination
1-11
ISSN
0892-7219
Department/School
Australian Maritime College
Publisher
American Society for Mechanical Engineers
Place of publication
USA
Rights statement
Copyright 2017 by ASME
Repository Status
Restricted
Socio-economic Objectives
Environmentally sustainable mineral resource activities not elsewhere classified