Plastidial α-glucan phosphorylase is not required for starch degradation in Arabidopsis leaves but has a role in the tolerance of abiotic stress
journal contribution
posted on 2023-06-14, 09:41authored byZeeman, SC, Thorneycroft, D, Schupp, N, Chapple, A, Weck, M, Dunstan, H, Haldimann, P, Bechtold, N, Smith, AM, Steven SmithSteven Smith
To study the role of the plastidial α-glucan phosphorylase in starch metabolism in the leaves of Arabidopsis, two independent mutant lines containing T-DNA insertions within the phosphorylase gene were identified. Both insertions eliminate the activity of the plastidial α-glucan phosphorylase. Measurement of other enzymes of starch metabolism reveals only minor changes compared with the wild type. The loss of plastidial α-glucan phosphorylase does not cause a significant change in the total accumulation of starch during the day or its remobilization at night. Starch structure and composition are unaltered. However, mutant plants display lesions on their leaves that are not seen on wild-type plants, and mesophyll cells bordering the lesions accumulate high levels of starch. Lesion formation is abolished by growing plants under 100% humidity in still air, but subsequent transfer to circulating air with lower humidity causes extensive wilting in the mutant leaves. Wilted sectors die, causing large lesions that are bordered by starch-accumulating cells. Similar lesions are caused by the application of acute salt stress to mature plants. We conclude that plastidial phosphorylase is not required for the degradation of starch, but that it plays a role in the capacity of the leaf lamina to endure a transient water deficit.
History
Publication title
Plant Physiology
Volume
135
Pagination
849-858
ISSN
0032-0889
Department/School
School of Natural Sciences
Publisher
Amer Soc Plant Biologists
Place of publication
15501 Monona Drive, Rockville, USA, Md, 20855
Rights statement
Copyright 2004 American Society of Plant Biologists