University of Tasmania
Browse

File(s) under permanent embargo

Plastidial α-glucan phosphorylase is not required for starch degradation in Arabidopsis leaves but has a role in the tolerance of abiotic stress

journal contribution
posted on 2023-06-14, 09:41 authored by Zeeman, SC, Thorneycroft, D, Schupp, N, Chapple, A, Weck, M, Dunstan, H, Haldimann, P, Bechtold, N, Smith, AM, Steven SmithSteven Smith
To study the role of the plastidial α-glucan phosphorylase in starch metabolism in the leaves of Arabidopsis, two independent mutant lines containing T-DNA insertions within the phosphorylase gene were identified. Both insertions eliminate the activity of the plastidial α-glucan phosphorylase. Measurement of other enzymes of starch metabolism reveals only minor changes compared with the wild type. The loss of plastidial α-glucan phosphorylase does not cause a significant change in the total accumulation of starch during the day or its remobilization at night. Starch structure and composition are unaltered. However, mutant plants display lesions on their leaves that are not seen on wild-type plants, and mesophyll cells bordering the lesions accumulate high levels of starch. Lesion formation is abolished by growing plants under 100% humidity in still air, but subsequent transfer to circulating air with lower humidity causes extensive wilting in the mutant leaves. Wilted sectors die, causing large lesions that are bordered by starch-accumulating cells. Similar lesions are caused by the application of acute salt stress to mature plants. We conclude that plastidial phosphorylase is not required for the degradation of starch, but that it plays a role in the capacity of the leaf lamina to endure a transient water deficit.

History

Publication title

Plant Physiology

Volume

135

Pagination

849-858

ISSN

0032-0889

Department/School

School of Natural Sciences

Publisher

Amer Soc Plant Biologists

Place of publication

15501 Monona Drive, Rockville, USA, Md, 20855

Rights statement

Copyright 2004 American Society of Plant Biologists

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC