University of Tasmania
Browse

File(s) under permanent embargo

Poly(ethylene glycol) functionalization of monolithic poly(divinyl benzene) for improved miniaturized solid phase extraction of protein-rich samples

journal contribution
posted on 2023-05-19, 08:19 authored by Candish, E, Khodabandeh, A, Gaborieau, M, Thomas RodemannThomas Rodemann, Robert ShellieRobert Shellie, Gooley, AA, Emily HilderEmily Hilder
Non-specific protein adsorption on hydrophobic solid phase extraction (SPE) adsorbents can reduce the efficacy of purification. To improve sample clean-up, poly(divinyl benzene) (PDVB) monoliths grafted with hydrophilic polyethylene glycol methacrylate (PEGMA) were developed. Residual vinyl groups (RVGs) of the PDVB were employed as anchor points for PEGMA grafting. Two PEGMA monomers, Mn 360 and 950, were compared for graft solutions containing 5–20% monomer. Protein binding was qualitatively screened using fluorescently labeled human serum albumin (HSA) to determine optimal PEGMA concentration. The fluorescent signal of PDVB was reduced for PDVB-g-PEGMA360 (10%) and PDVB-g-PEGMA950 (20%). The PEGMA content (w/w%) was quantified by solid state 1H NMR to be 29.9 ± 1.6% for PDVB-g-PEGMA360 and 7.7 ± 1.2% for PDVB-g-PEGMA950. To assess adsorbent performance breakthrough curves for PDVB, PDVB-g-PEGMA360 and PDVB-g-PEGMA950 were compared. The breakthrough volume (VB) and shape of the curve for PDVB-g-PEGMA950 were maintained relative to PDVB (2.3 and 2.8 mL, respectively). A reduced VB of 0.5 mL and shallow breakthrough curve indicated PDVB-g-PEGMA360 was not suitable for SPE. A high ibuprofen recovery of 92 ± 0.30 and 78 ± 0.93% was seen for PDVB and PDVB-g-PEGMA950, respectively. Protein adsorption was reduced from 31 ± 2.41 to 12 ± 0.49% for PDVB and PDVB-g-PEGMA950, respectively. SPE of ibuprofen from plasma was compared for PDVB and PDVB-g-PEGMA950 by at-line electrospray ionization mass spectrometry (ESI-MS). PDVB-g-PEGMA950 demonstrated a threefold increase in assay sensitivity indicating a superior analyte purification.

History

Publication title

Analytical and Bioanalytical Chemistry

Volume

409

Issue

8

Pagination

2189-2199

ISSN

1618-2642

Department/School

School of Natural Sciences

Publisher

Springer-Verlag Heidelberg

Place of publication

Tiergartenstrasse 17, Heidelberg, Germany, D-69121

Rights statement

Copyright Springer-Verlag Berlin Heidelberg 2017

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC