We introduce a class of finite-dimensional nonlinear superalgebras L = L0̄? + L1̄ providing gradings of L 0̄ = gl(n) ≃ sl(n) + gl(1). Odd generators close by anticommutation on polynomials (of degree >1) in the gl(n) generators. Specifically, we investigate 'type I' super-gl(n) algebras, having odd generators transforming in a single irreducible representation of gl(n) together with its contragredient. Admissible structure constants are discussed in terms of available gl(n) couplings, and various special cases and candidate superalgebras are identified and exemplified via concrete oscillator constructions. For the case of the n-dimensional defining representation, with odd generators Qa, Q̄b and even generators E ab, a, b = 1,...,n, a three-parameter family of quadratic super-gl(n) algebras (deformations of sl(n/1)) is defined. In general, additional covariant Serre-type conditions are imposed in order that the Jacobi identities are fulfilled. For these quadratic super-gl(n) algebras, the construction of Kac modules and conditions for atypicality are briefly considered. Applications in quantum field theory, including Hamiltonian lattice QCD and spacetime supersymmetry, are discussed.