University Of Tasmania

File(s) under permanent embargo

Potassium homeostasis and signaling as a determinant of Echinacea species tolerance to salinity stress

journal contribution
posted on 2023-05-21, 16:11 authored by Fatemeh AhmadiFatemeh Ahmadi, Samadi, A, Sepehr, E, Rahimi, A, Sergey ShabalaSergey Shabala
Salt tolerant is strongly related to potassium (K+) retention in plant tissues under salt stress conditions. However, it is unclear for different Echinacea species. So, mechanistic basis of four Echinacea species (i.e. Echinacea purpurea, Echinacea angustifolia, Echinacea pallida, and Echinacea sanguinea) to salinity stress tolerance, and K+ retention were assessed in the present study. Non-invasive microelectrode ion flux measuring, dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) activities, and pharmacological measurements were performed based on the standard methods. Ion flux measurements revealed higher K+ efflux in E. pallida and E. sanguinea species compared to the E. purpurea and E. angustifolia species in the elongation zone. Higher salinity-induced H+ efflux was found in the elongation zone than mature zone. However, E. angustifolia and E. purpurea had more Ca2+ influx compared to E. pallida and E. sanguinea species. Net K+ efflux decreased (> 90 %) in the presence of tetraethylammonium chloride (TEA) and GdCl3. Increasing of Ca2+ uptake and K+ loss in four Echinacea species roots were found in the presence of 0.3 mM Cu/Ascorbate (Cu/Asc). The significant role of H+-ATPase in H+ efflux was demonstrated by sodium orthovanadate. Ultimately, the physiological properties of Echinacea species have a critical role in salinity-resistant/sensitive differences. Future scientific understanding of Echinacea species physiognomies may be necessary for better understanding of the plant behavior to salinity stress.


Publication title

Environmental and Experimental Botany



Article number









Tasmanian Institute of Agriculture (TIA)


Pergamon-Elsevier Science Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Ox5 1Gb

Rights statement

© 2022 Elsevier B.V. All rights reserved.

Repository Status

  • Restricted

Socio-economic Objectives

Other plant production and plant primary products not elsewhere classified

Usage metrics

    University Of Tasmania