University of Tasmania
Browse

File(s) not publicly available

Prediction of hydrogen safety parameters using intelligent techniques

journal contribution
posted on 2023-05-16, 23:12 authored by Ho, NT, Karri, V, Madsen, O
With increase in the use and application of hydrogen for stationary and mobile applications, there is an increased pressure to ensure the safety handling and monitoring of this combustible gas. The associated equipment to monitor and measure explosion limit of any leakage together with the pressure and flow rate is very expensive. Any reliable mathematical or empirical means to estimate and predict those safety features of hydrogen will greatly assist in avoiding expensive instrumentation. In this paper predictive model for accurate estimation of hydrogen parameters such as percentage lower explosive limit, hydrogen pressure and hydrogen flow rate as a function of different input conditions of power supplied (voltage and current), the feed of de-ionized water and various Hogen®20 electrolyser system parameters is carried out. In addition, the percentage contributions of the input parameters on each hydrogen production parameters and optimum network architecture to minimize computation time and maximize network accuracy are presented. It is shown that output from the neural network predictive models of the hydrogen safety features agree well with its experimentally measured values. The hydrogen production parameters and predicted safety explosive limit were found to be less than 5% of average root mean square error. Copyright © 2008 John Wiley & Sons, Ltd.

History

Publication title

International Journal of Energy Research

Volume

2008

Issue

online

Pagination

1-12

ISSN

0363-907X

Department/School

School of Engineering

Publisher

John Wiley & Sons

Place of publication

International

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in engineering

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC