University of Tasmania
Browse

File(s) not publicly available

Protective role of metallothioneins in the injured mammalian brain

journal contribution
posted on 2023-05-16, 15:27 authored by Adrian WestAdrian West, Meng Inn ChuahMeng Inn Chuah, James VickersJames Vickers, Chung, RS
Metallothioneins (MTs) are small cysteine-rich proteins which are found widely throughout the mammalian body, including the CNS. There are extensive data on the structure and expression of MTs, and many basic properties pertinent to MT biology in the CNS appear to be well established. As discussed in this review, one isoform class (MT-I/II) is rapidly induced following many types of CNS insult, and is strongly neuroprotective, whilst another isoform class (MT-III) shows major differences in its expression profile and physiological properties. As in other tissues, there is no clear consensus on the mechanism of MT action in the CNS and how it exerts its protective role, despite a number of excellent animal and cell culture models of MT expression in the brain, and a large literature on the physico-chemical properties of MTs extending over several decades. This review is therefore an attempt to summarise the recent literature on the expression of MTs in the adult mammalian brain and how MTs possibly act to protect the brain following physical or chemical insult. One exciting finding from recent work is that perturbing the levels of MT in the brain has an effect that extends beyond cells which normally express MT to other cell types including neurons, microglia and cells of the immune system. These observations were made mainly using animal models in which MT action can be observed in its normal cellular context, and this review focuses particularly on work conducted in animal models of physical and chemical injury in the brain.

History

Publication title

Reviews in the Neurosciences

Volume

15

Pagination

157-166

ISSN

0334-1763

Department/School

Tasmanian School of Medicine

Publisher

Freund & Pettman

Place of publication

England

Repository Status

  • Restricted

Socio-economic Objectives

Clinical health not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC