University of Tasmania
155611 - randomised controlled trial.pdf (530.86 kB)

Randomised controlled trial of active case management to link hepatitis C notifications to treatment in Tasmania, Australia: a study protocol

Download (530.86 kB)
journal contribution
posted on 2023-05-21, 16:49 authored by Marukutira, T, Moore, KP, Hellard, M, Richmond, J, Turner, K, Pedrana, AE, Melody, S, Fay JohnstonFay Johnston, Owen, L, Van Den Boom, W, Scott, N, Thompson, A, Iser, D, Spelman, T, Veitch, M, Stoove, MA, Doyle, J

Introduction: By subsidising access to direct acting antivirals (DAAs) for all people living with hepatitis C (HCV) in 2016, Australia is positioned to eliminate HCV as a public health threat. However, uptake of DAAs has declined over recent years and new initiatives are needed to engage people living with HCV in care. Active follow-up of HCV notifications by the health department to the notifying general practitioner (GP) may increase treatment uptake. In this study, we explore the impact of using hepatitis C notifications systems to engage diagnosing GPs and improve patient access to treatment.

Methods and analysis: This study is a randomised controlled trial comparing enhanced case management of HCV notifications with standard of care. The intervention includes phone calls from a department of health (DoH) specialist HCV nurse to notifying GPs and offering HCV management support. The level of support requested by the GP was graded in complexity: level 1: HCV information only; level 2: follow-up testing advice; level 3: prescription support including linkage to specialist clinicians and level 4: direct patient contact. The study population includes all GPs in Tasmania who notified HCV diagnosis to the DoH between September 2020 and December 2021. The primary outcome is proportion of HCV cases who initiate DAAs after 12 weeks of HCV notification to the health department. Secondary outcomes are proportion of HCV notifications that complete HCV RNA testing, treatment workup and treatment completion. Multiple logistic regression modelling will explore factors associated with the primary and secondary outcomes. The sample size required to detect a significant difference for the primary outcome is 85 GPs in each arm with a two-sided alpha of 0.05% and 80% power.


Publication title

BMJ Open








Menzies Institute for Medical Research


BMJ Publishing Group Ltd.

Place of publication

United Kingdom

Rights statement

© Author(s) (or their employer(s)) 2022. Published by BMJ. This is an open access article distributed in accordance with the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited.

Repository Status

  • Open

Socio-economic Objectives

Treatment of human diseases and conditions

Usage metrics

    University Of Tasmania


    Ref. manager