University of Tasmania
Browse

File(s) under permanent embargo

Rare earth element phosphate minerals from the Olympic Dam Cu-U-Au-Ag deposit, South Australia: recognizing temporal-spatial controls on ree mineralogy in an evolved IOCG system

journal contribution
posted on 2023-05-20, 01:14 authored by Schmandt, DS, Cook, NJ, Ciobanu, CL, Ehrig, K, Wade, PW, Gilbert, S, Vadim Kamenetsky
Florencite, [REEAl3(PO4)2(OH)6], is the most abundant REE-phosphate mineral in the giant Olympic Dam Cu-U-Au-Ag deposit, South Australia. Florencite typically occurs as fine-grained crystals and occasional aggregates in the matrix of the granite-dominant breccia that hosts the majority of the copper mineralization. Olympic Dam florencite, with the compositional range and extended formula (Ca0.01–0.24Sr0.03–0.40La0.14–0.49Ce0.20–0.47Pr0.00–0.03Nd0.00–0.05)Σ0.43–0.96Al2.89–3.33(P1.42–1.96S0.05–0.34As0.0–0.20)Σ1.77–2.21O4(OH)6], is LREE-enriched, typically La-dominant, while HREEs are minor. There is also compositional variability with respect to Sr, Ca, SO4, and AsO4 components. Chondrite-normalized fractionation trends are steeply downwards-sloping with a relatively low and flat HREE segment. Such a fractionation trend is markedly different from that seen for REE-fluorocarbonates, the dominant REE host at Olympic Dam, which contain relatively higher MREE and HREE components. Xenotime is relatively rare at Olympic Dam and is most commonly seen as overgrowths on zircon. Compositional data for xenotime show HREE concentrations in which Y > Yb > Er > Dy > Ho. Thorium, U, and Pb are minor components in both xenotime and florencite. Monazite is a minor phase and co-existing monazite and florencite are never observed. Texturally, florencite appears to belong to a later stage of LREE mineralization at Olympic Dam, following and less prominent than the main REE-fluorocarbonate stage. Olympic Dam florencite is more La-rich and Ca-poor than it is in most of the localities worldwide for which compositional data have been published. The REE mineralization trends of florencite are compared with published REE trends for other mineral groups from Olympic Dam. Uraninite, brannerite, coffinite, and apatite show patterns of progressive LREE depletion from generation to generation, suggesting enhanced solubility of LREE over geological time. All LREE minerals (fluorocarbonates and phosphates), on the other hand, display progressive LREE enrichment correlating with a paragenetic sequence from REE-fluorocarbonates with essential Ca, through bastnäsite, to florencite. The late-stage florencite reported here is the most La-rich of all REE-bearing phases and is interpreted to record either the end of a continuous fluid evolution, or a later separate event at changed physicochemical conditions under which REE-aluminum phosphate minerals are stable.

History

Publication title

Canadian Mineralogist

Volume

57

Pagination

1-22

ISSN

0008-4476

Department/School

School of Natural Sciences

Publisher

Mineralogical Assoc Canada

Place of publication

Po Box 78087, Meriline Postal Outlet, 1460 Merivale Rd, Ottawa, Canada, Ontario, K2E 1B1

Rights statement

Copyright © 2019 Mineralogical Association of Canada

Repository Status

  • Restricted

Socio-economic Objectives

Titanium minerals, zircon, and rare earth metal ore (e.g. monazite) exploration; Mineral exploration not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC