We consider a data set of DNA sequence variation at three Y chromosome genes (SMCY, DBY, and DFFRY) in a worldwide sample of human Y chromosomes. Between 53 and 70 chromosomes were fully screened for sequence variation at each locus by using the method of denaturing high-performance liquid chromatography. The sum of the lengths of the three genes is 64,120 bp. We have used these data to study the ancestral genealogy of human Y chromosomes. In particular, we focused on estimating the expected time to the most recent common ancestor and the expected ages of certain mutations with interesting geographic distributions. Although the geographic structure of the inferred haplotype tree is reminiscent of that obtained for other loci (the root is in Africa, and most of the oldest non-African lineages are Asian), the expected time to the most recent common ancestor is remarkably short, on the order of 50,000 years. Thus, although previous studies have noted that Y chromosome variation shows extreme geographic structure, we estimate that the spread of Y chromosomes out of Africa is much more recent than previously was thought. We also show that our data indicate substantial population growth in the effective number of human Y chromosomes.
History
Publication title
Proceedings of the National Academy of Sciences
Volume
97
Issue
13
Pagination
7360-7365
ISSN
0027-8424
Department/School
Menzies Institute for Medical Research
Publisher
National Academy of Science
Place of publication
United States
Repository Status
Restricted
Socio-economic Objectives
Understanding past societies not elsewhere classified