University of Tasmania
Browse

File(s) not publicly available

Regenerative energy control system for plug-in hydrogen fuel cell scooter

journal contribution
posted on 2023-05-16, 21:13 authored by Yap, WK, Karri, V
An intelligent control system was developed using simple control methodologies for an H2-powered fuel cell scooter with the aid of a built-in microprocessor. This system increases the power input to drive a hydrogen fuel cell scooter, particularly during uphill conditions by running both the batteries and the fuel cell source in parallel. This system also improves the energy management of the scooter by recharging the battery using the fuel cell as well as automatic switching to the battery source when the hydrogen fuel cell is running low on hydrogen. This system was tested on a bench set simulating a 254 W hydrogen fuel cell stack equipped on a 200 W scooter. The test rig set-up depicts a practical scooter running on various load conditions. These results reflect the efficiencies of actual running conditions. The entire operation was embedded in a PICAXE-18 microcontroller for automatic switching between the batteries and the fuel cell source. An increase in the DC motor efficiency by 6 % has been shown. The uphill angle of the scooter has been increased by 19.3 %, which means the scooter would be able to travel on steeper hills. Copyright © 2007 John Wiley & Sons, Ltd.

History

Publication title

International Journal of Energy research

Volume

32

Issue

9

Pagination

783-792

ISSN

1099-114X

Department/School

School of Engineering

Publisher

JOHN WILEY & SONS LTD

Place of publication

ENGLAND

Repository Status

  • Restricted

Socio-economic Objectives

Renewable energy not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC