Regiospecificity Profiles of Storage and Membrane Lipids from the Gill and Muscle Tissue of Atlantic Salmon (Salmo salarL.) Grown at Elevated Temperature
journal contribution
posted on 2023-05-16, 18:22 authored by Matthew MillerMatthew Miller, Nichols, PD, Barnes, JC, Noel DaviesNoel Davies, Peacock, EJ, Christopher CarterChristopher CarterRegiospecific and traditional analysis, of both storage and membrane lipids, was performed on gill, white muscle, and red muscle samples taken from Atlantic salmon (Salmo salar) to gauge the effect of elevated water temperature. The fish, fed a commercial diet, were held at an elevated water temperature of 19°C. Total n-3 PUFA, total PUFA, and n-3/n-6 and unsaturated/saturated fatty acid (UFA/SFA) ratios in the FA profile of the total lipid extract in the white muscle were fairly low compared with fish grown at 15°C. Adaptation of structural and storage lipids at elevated temperatures was shown by a significant (P < 0.01) reduction in PUFA especially in the percentage of EPA (6-8%). Further adaptation, was indicated by the percentages of SFA, which were significantly (P < 0.05) higher in gill (56%) and white muscle (58%) polar lipid fractions and coincided with lower percentages of n-3, n-6, and total PUFA. The regiospecific profiles indicated a high affinity of DHA to the sn-2 position in both the TAG (61-68%) and polar lipid (35-60%) fractions. The combination of detailed regiospecific and lipid analyses demonstrated adaptation of cell membrane structure in Atlantic salmon grown at an elevated water temperature. Copyright © 2006 by AOCS Press.
History
Publication title
LipidsVolume
41Issue
9Pagination
865-876ISSN
0024-4201Department/School
Institute for Marine and Antarctic StudiesPublisher
A O C S PressPlace of publication
United StatesRepository Status
- Restricted
Socio-economic Objectives
Fisheries - aquaculture not elsewhere classifiedUsage metrics
Categories
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC