Relation of reduced preclinical left ventricular diastolic function and cardiac remodeling in overweight youth to insulin resistance and inflammation
journal contribution
posted on 2023-05-18, 19:41authored byDahiya, R, Shultz, SP, Dahiya, A, Fu, J, Flatley, C, Duncan, D, Cardinal, J, Kostner, KM, Nuala ByrneNuala Byrne, Andrew HillsAndrew Hills, Harris, M, Conwell, LS, Leong, GM
Insulin resistance (IR) and inflammation are associated with an increased risk of cardiovascular disease and may contribute to obesity cardiomyopathy. The earliest sign of obesity cardiomyopathy is impaired left ventricular (LV) diastolic function, which may be evident in obese children and adolescents. However, the precise metabolic basis of the impaired LV diastolic function remains unknown. The aims of this study were to evaluate cardiac structure and LV diastolic function by tissue Doppler imaging in overweight and obese (OW) youth and to assess the relative individual contributions of adiposity, IR, and inflammation to alterations in cardiac structure and function. We studied 35 OW (body mass index standard deviation score 2.0±0.8; non-IR n=19, IR n=16) and 34 non-OW youth (body mass index standard deviation score 0.1±0.7). LV diastolic function was reduced in OW youth compared with non-OW controls, as indicated by lower peak myocardial relaxation velocities (p<0.001) and greater filling pressures (p<0.001). OW youth also had greater LV mass index (p<0.001), left atrial volume index, and LV interventricular septal thickness (LV-IVS; both p=0.02). IR-OW youth had the highest LV filling pressures, LV-IVS, and relative wall thickness (all p<0.05). Homeostasis model of assessment-insulin resistance and C-reactive protein were negative determinants of peak myocardial relaxation velocity and positive predictors of filling pressure. Adiponectin was a negative determinant of LV-IVS, independent of obesity. In conclusion, OW youth with IR and inflammation are more likely to have adverse changes to cardiovascular structure and function which may predispose to premature cardiovascular disease in adulthood.