University of Tasmania
Browse

File(s) under permanent embargo

Revisiting MOA 2013-BLG-220L: a solar-type star with a cold super-Jupiter companion

journal contribution
posted on 2023-05-20, 18:06 authored by Vandorou, A, Bennett, DP, Jean-Philippe BeaulieuJean-Philippe Beaulieu, Alard, C, Joshua Blackman, Andrew ColeAndrew Cole, Bhattacharya, A, Bond, IA, Koshimoto, N, Marquette, J-B
We present the analysis of high-resolution images of MOA-2013-BLG-220, taken with the Keck adaptive optics system six years after the initial observation, identifying the lens as a solar-type star hosting a super-Jupiter-mass planet. The masses of planets and host stars discovered by microlensing are often not determined from light-curve data, while the star–planet mass ratio and projected separation in units of Einstein ring radius are well measured. High-resolution follow-up observations after the lensing event is complete can resolve the source and lens. This allows direct measurements of flux, and the amplitude and direction of proper motion, giving strong constraints on the system parameters. Due to the high relative proper motion, μrel,Geo = 12.62 ± 0.11 mas yr-1, the source and lens were resolved in 2019, with a separation of 77.1 ± 0.5 mas. Thus, we constrain the lens flux to KKeck,lens = 17.92 ± 0.02. By combining constraints from the model and Keck flux, we find the lens mass to be ML = 0.88 ± 0.05 M at DL = 6.72 ± 0.59 kpc. With a mass ratio of q = (3.00 ± 0.03) x 10-3 the planet’s mass is determined to be MP = 2.74 ± 0.17 MJ at a separation of r = 3.03 ± 0.27 au. The lens mass is much higher than the prediction made by Bayesian analysis that assumes all stars have an equal probability to host a planet of the measured mass ratio, and suggests that planets with mass ratios of a few times 10-3 are more common orbiting massive stars. This demonstrates the importance of high-resolution follow-up observations for testing theories like these.

Funding

Australian Research Council

History

Publication title

Astronomical Journal

Volume

160

Article number

121

Number

121

Pagination

1-8

ISSN

0004-6256

Department/School

School of Natural Sciences

Publisher

Univ Chicago Press

Place of publication

1427 E 60Th St, Chicago, USA, Il, 60637-2954

Rights statement

© 2020. The American Astronomical Society

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the physical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC