University Of Tasmania

File(s) not publicly available

Rhizobium leguminosarum bv viciae produces a novel cyclic trihydroxamate siderophore, vicibactin

journal contribution
posted on 2023-05-16, 11:30 authored by Dilworth, MJ, Carson, KC, Giles, RGF, Byrne, LT, Andrew GlennAndrew Glenn
Trihydroxamate siderophores were isolated from iron-deficient cultures of three strains of Rhizobium leguminosarum biovar viciae, two from Japan (WSM709, WSM710) and one from the Mediterranean (WU235), and from a Tn5-induced mutant of WSM710 (MNF7101). The first three all produced the same compound (vicibactin), which was uncharged and could be purified by solvent extraction into benzyl alcohol. The gallium and ferric complexes of vicibactin were extractable into benzyl alcohol at pH 5.0, while metal-free vicibactin could be extracted with good yield at pH 8.0. The trihydroxamate from MNF7101 (vicibactin 7101) could not be extracted into benzyl alcohol, but its cationic nature permitted purification by chromatography on Sephadex CM-25 (NH 4 + form). Relative molecular masses and empirical formulae were obtained from fast-atom-bombardment MS. The structures were derived from one- and two-dimensional 1 H and 13 C NMR spectroscopy, using DQF-COSY, NOESY, HMQC and HMBC techniques on the compounds dissolved in methanol-d 4 and DMSO-d 6 . Vicibactin proves to be a cyclic molecule containing three residues each of (R)-2,5-diamino-N 2 -acetyl-N 5 -hydroxypentanoic acid (N 2 -acetyl-N 5 -hydroxy-D-ornithine) and (R)-3-hydroxybutanoic acid, arranged alternately, with alternating ester and peptide bonds. Vicibactin 7101 differed only in lacking the acetyl substitution on the N 2 of the N 5 -hydroxyornithine, resulting in net positive charge; it was still functional as a siderophore and promoted 55 Fe uptake by iron-starved cells of WSM710 in the presence of an excess of phosphate. The rate of vicibactin biosynthesis by iron-deficient cells of WSM710 was essentially constant between pH 5.5 and 7.0, but much decreased at pH 5.0. When iron-starved cultures were supplemented with potential precursors for vicibactin, the rates of its synthesis were consistent with both β-hydroxybutyrate and ornithine being precursors. At least three genes seem likely to be involved in synthesis of vicibactin from ornithine and β-hydroxybutyrate: a hydroxylase adding the -OH group to the N 5 Of ornithine, an acetylase adding the acetyl group to the N 2 of ornithine, and a peptide synthetase system.


Publication title









Vice-Chancellor's Office


Cambridge University Press

Place of publication


Repository Status

  • Restricted

Socio-economic Objectives

Pasture, browse and fodder crops not elsewhere classified

Usage metrics