University of Tasmania
Browse

File(s) not publicly available

Role of kairomones in feeding interactions between seahorses and mysids

journal contribution
posted on 2023-05-16, 14:02 authored by Cohen, PJ, Ritz, DA
Big-bellied seahorses, Hippocampus abdominalis (Chordata: Syngnathidae), feed predominantly on swarming mysids in southern Tasmania. We tested the possibility that kairomones mediate this predator/prey interaction. 'Fish water' was prepared by holding one seahorse in 41 of seawater for 1h and using this water within 1h to test for presence of kairomones. One ml of this water pipetted into a tank containing five mysids, Paramesopodopsis rufa (Arthropoda: Mysidacea), induced a significantly increased number of tailflips (mysid escape response) compared with control seawater. The same effect was seen whether seahorses were fed or starved immediately before the experiment. This effect was not seen when realistic concentrations of excretory products, either ammonium hydroxide or urea, were used instead of fish water. When seahorses were kept in visual contact with mysid prey, but unable to capture them, subsequent testing of the 'fish water' in the same way as above did not produce a significant increase of tailflipping in mysids. Thus it appears that, when attacking, seahorses can suppress release of kairomones in order to remain chemically inconspicuous to their prey. This is the first demonstration of this phenomenon. When mysids in a cohesive swarm (65 or 100 individuals) were exposed to 'fish water', no significant anti-predator response i.e. decrease in swarm volume, could be detected. We interpret these results to indicate the greater vulnerability of mysids when not in social groupings (swarm or school) and the higher likelihood of an energetic response (particularly tailflipping) to a threat.

History

Publication title

Journal of the Marine Biological Association of the United Kingdom

Volume

83

Pagination

633-638

ISSN

0025-3154

Department/School

School of Natural Sciences

Publisher

Cambridge University Press

Place of publication

USA

Repository Status

  • Restricted

Socio-economic Objectives

Marine biodiversity

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC