University Of Tasmania

File(s) under permanent embargo

Salt stress sensing and early signalling events in plant roots: current knowledge and hypothesis

journal contribution
posted on 2023-05-18, 15:04 authored by Sergey ShabalaSergey Shabala, Wu, H, Bose, J
Soil salinity is a major environmental constraint to crop production. While the molecular identity and functional expression of Na+ transport systems mediating Na+ exclusion from the cytosol has been studied in detail, far less is known about the mechanisms by which plants sense high Na+ levels in the soil and the rapid signalling events that optimise plant performance under saline conditions. This review aims to fill this gap. We first discuss the nature of putative salt stress sensors, candidates which include Na+ transport systems, mechanosensory proteins, proteins with regulatory Na+ binding sites, sensing mediated by cyclic nucleotide-gated channels, purine receptors, annexin and voltage gating. We suggest that several transport proteins may be clustered together to form a microdomain in a lipid raft, allowing rapid changes in the activity of an individual protein to be translated into stress-induced Ca2+ and H2O2 signatures. The pathways of stress signalling to downstream targets are discussed, and the kinetics and specificity of salt stress signalling between glycophytes and halophytes is compared. We argue that these sensing mechanisms operate in parallel, providing plants with a robust system for decoding information about the specific nature and severity of the imposed salt stress.


Publication title

Plant Science








Tasmanian Institute of Agriculture (TIA)


Elsevier Sci Ireland Ltd

Place of publication

Customer Relations Manager, Bay 15, Shannon Industrial Estate Co, Clare, Ireland

Rights statement

Copyright 2015 Elsevier Ireland Ltd.

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the environmental sciences