University Of Tasmania

File(s) under permanent embargo

Semi-supervised feature learning for improving writer identification

journal contribution
posted on 2023-05-20, 01:32 authored by Chen, S, Wang, Y, Lin, C-T, Ding, W, Cao, Z
Data augmentation is typically used by supervised feature learning approaches for offline writer identification, but such approaches require a mass of additional training data and potentially lead to overfitting errors. In this study, a semi-supervised feature learning pipeline is proposed to improve the performance of writer identification by training with extra unlabeled data and the original labeled data simultaneously. Specifically, we propose a weighted label smoothing regularization (WLSR) method for data augmentation, which assigns a weighted uniform label distribution to the extra unlabeled data. The WLSR method regularizes the convolutional neural network (CNN) baseline to allow more discriminative features to be learned to represent the properties of different writing styles. The experimental results on well-known benchmark datasets (ICDAR2013 and CVL) showed that our proposed semi-supervised feature learning approach significantly improves the baseline measurement and perform competitively with existing writer identification approaches. Our findings provide new insights into offline writer identification.


Publication title

Information Sciences








School of Information and Communication Technology


Elsevier Science Inc

Place of publication

360 Park Ave South, New York, USA, Ny, 10010-1710

Rights statement

© 2019 Elsevier Inc. All rights reserved.

Repository Status

  • Restricted

Socio-economic Objectives

Intelligence, surveillance and space; Expanding knowledge in the information and computing sciences; Expanding knowledge in human society