University Of Tasmania
Browse

File(s) under permanent embargo

Sensitivity of abyssal water masses to overflow parameterisations

journal contribution
posted on 2023-05-18, 13:04 authored by Snow, K, Hogg, AM, Stephanie Downes, Sloyan, BM, Bates, ML, Griffies, SM
Antarctic Bottom Water (AABW) and North Atlantic Deep Water (NADW) control the abyssal limb of the global overturning circulation and play a major role in oceanic heat uptake and carbon storage. However, current general circulation models are unable to resolve the observed AABW and NADW formation and transport processes. One key process, that of overflows, motivates the application of overflow parameterisations. We present a sensitivity study of both AABW and NADW properties to three current parameterisations using a z*-coordinate ocean-sea ice model within a realistic-topography sector of the Atlantic Ocean.

Overflow parameterisations that affect only tracer equations are compared to a fully dynamical Lagrangian point particle method. An overflow parameterisation involving partial convective mixing of tracers is most efficient at transporting dense NADW water downslope. This parameterisation leads to a maximum mean increase in density in the north of 0.027 kg m-3 and a decrease in age of 525 years (53%). The relative change in density and age in the south is less than 30% of that in the north for all overflow parameterisations. The reduced response in the south may result from the differing dense water formation and overflow characteristics of AABW compared to NADW. Alternative approaches may be necessary to improve AABW representation in z*-coordinate ocean climate models.

History

Publication title

Ocean Modelling

Volume

89

Pagination

84-103

ISSN

1463-5003

Department/School

Institute for Marine and Antarctic Studies

Publisher

Elsevier Sci Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Oxon, Ox5 1Gb

Rights statement

Copyright 2015 Elsevier Ltd.

Repository Status

  • Restricted

Socio-economic Objectives

Climate change models

Usage metrics

    University Of Tasmania

    Exports