University Of Tasmania

File(s) under permanent embargo

Stomatal dynamics are limited by leaf hydraulics in ferns and conifers: results from simultaneous measurements of liquid and vapour fluxes in leaves

journal contribution
posted on 2023-05-18, 13:52 authored by Martins, SCV, McAdam, SAM, Deans, RM, DaMatta, FM, Timothy BrodribbTimothy Brodribb
Stomatal responsiveness to vapour pressure deficit (VPD) results in continuous regulation of daytime gas-exchange directly influencing leaf water status and carbon gain. Current models can reasonably predict steady-state stomatal conductance (gs) to changes in VPD but the gs dynamics between steady-states are poorly known. Here, we used a diverse sample of conifers and ferns to show that leaf hydraulic architecture, in particular leaf capacitance, has a major role in determining the gs response time to perturbations in VPD. By using simultaneous measurements of liquid and vapour fluxes into and out of leaves, the in situ fluctuations in leaf water balance were calculated and appeared to be closely tracked by changes in gs thus supporting a passive model of stomatal control. Indeed, good agreement was found between observed and predicted gs when using a hydropassive model based on hydraulic traits. We contend that a simple passive hydraulic control of stomata in response to changes in leaf water status provides for efficient stomatal responses to VPD in ferns and conifers, leading to closure rates as fast or faster than those seen in most angiosperms.


Publication title

Plant, Cell and Environment








School of Natural Sciences


Blackwell Publishing Ltd

Place of publication

9600 Garsington Rd, Oxford, England, Oxon, Ox4 2Dg

Rights statement

Copyright 2015 John Wiley & Sons Ltd

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the biological sciences