University of Tasmania
Browse

File(s) not publicly available

Structural and EPR Study of the Dependence on Deuteration of the Jahn-Teller Distortion in Ammonium Hexaaquacopper(II) Sulfate, (NH4)2[Cu(H2O)6](SO4)2

journal contribution
posted on 2023-05-16, 12:10 authored by Henning, RW, Schultz, AJ, Hitchman, MA, Kelly, G, Astley, T
The variation of the EPR spectra with degree of deuteration of the partially deuterated Tutton salt ammonium hexaaquacopper(II) sulfate, (NH4)2[Cu(H2O)6](SO4)2, has been measured at 293 K. The measurements indicate that the structure changes quite abruptly from that of the pure hydrogenous salt to that of the fully deuterated salt at ~50% deuteration. The structure of a crystal in which ~42% of the hydrogen atoms were replaced by deuterium was elucidated at 15 K by single-crystal time-of-flight neutron diffraction. The hexaaquacopper(II) complex exhibits an orthorhombically distorted, tetragonally elongated octahedral coordination geometry (Cu-O bond distances of 2.281(1), 2.007(1), and 1.975(1) Ã…). The structure is very similar to that reported for the undeuterated salt at 9.6 K, and markedly different from that of the fully deuterated compound at 15 K, which has similar Cu-O bond lengths but with the directions of the long and intermediate bonds interchanged. There is no evidence for disorder or partial switching of the Cu-O bond directions. This is consistent with the temperature dependence of the EPR spectrum of the ~42% deuterated compound, which indicates a thermal equilibrium between the two structural forms close to room temperature similar to that reported for the undeuterated compound, but complete reversion to the low-temperature phase on cooling to 5 K. The possible influence of deuteration upon the hydrogen-bonding distances and the bearing of this upon the structural modifications of the compound are discussed.

History

Publication title

Inorganic Chemistry

Volume

39

Issue

4

Pagination

765-769

ISSN

0020-1669

Department/School

School of Natural Sciences

Publisher

American Chemical Society

Place of publication

USA

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC