University of Tasmania
Browse
- No file added yet -

Surface coatings of ZnO nanoparticles mitigate differentially a host of transcriptional, protein and signalling responses in primary human olfactory cells

Download (2.4 MB)
journal contribution
posted on 2023-05-17, 19:59 authored by Osmond-McLeod, MJ, McLeod, RIW, Oytam, Y, McCall, MJ, Feltis, B, Mackay-Sim, A, Wood, SA, Anthony CookAnthony Cook
Background Inhaled nanoparticles have been reported in some instances to translocate from the nostril to the olfactory bulb in exposed rats. In close proximity to the olfactory bulb is the olfactory mucosa, within which resides a niche of multipotent cells. Cells isolated from this area may provide a relevant in vitro system to investigate potential effects of workplace exposure to inhaled zinc oxide nanoparticles. Methods Four types of commercially-available zinc oxide (ZnO) nanoparticles, two coated and two uncoated, were examined for their effects on primary human cells cultured from the olfactory mucosa. Human olfactory neurosphere-derived (hONS) cells from healthy adult donors were analyzed for modulation of cytokine levels, activation of intracellular signalling pathways, changes in gene-expression patterns across the whole genome, and compromised cellular function over a 24 h period following exposure to the nanoparticles suspended in cell culture medium. Results ZnO nanoparticle toxicity in hONS cells was mediated through a battery of mechanisms largely related to cell stress, inflammatory response and apoptosis, but not activation of mechanisms that repair damaged DNA. Surface coatings on the ZnO nanoparticles mitigated these cellular responses to varying degrees. Conclusions The results indicate that care should be taken in the workplace to minimize generation of, and exposure to, aerosols of uncoated ZnO nanoparticles, given the adverse responses reported here using multipotent cells derived from the olfactory mucosa.

History

Publication title

Particle and Fibre Toxicology

Volume

10

Issue

54

Pagination

1-18

ISSN

1743-8977

Department/School

School of Health Sciences

Publisher

BioMed Central

Place of publication

London, England

Rights statement

Copyright 2013 Osmond-McLeod et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Repository Status

  • Open

Socio-economic Objectives

Other health not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC