TDP-43 is a major protein component of pathological neuronal inclusions that are present in frontotemporal dementia and amyotrophic lateral sclerosis. We report that TDP-43 plays an important role in dendritic spine formation in the cortex. The density of spines on YFP+ pyramidal neurons in both the motor and somatosensory cortex of Thy1-YFP mice, increased significantly from postnatal day 30 (P30), to peak at P60, before being pruned by P90. By comparison, dendritic spine density was significantly reduced in the motor cortex of Thy1-YFP::TDP-43A315T transgenic mice prior to symptom onset (P60), and in the motor and somatosensory cortex at symptom onset (P90). Morphological spine-type analysis revealed that there was a significant impairment in the development of basal mushroom spines in the motor cortex of Thy1-YFP::TDP-43A315T mice compared to Thy1-YFP control. Furthermore, reductions in spine density corresponded to mislocalisation of TDP-43 immunoreactivity and lowered efficacy of synaptic transmission as determined by electrophysiology at P60. We conclude that mutated TDP-43 has a significant pathological effect at the dendritic spine that is associated with attenuated neural transmission.
History
Publication title
Cerebral Cortex
Volume
27
Issue
7
Pagination
3630-3647
ISSN
1047-3211
Department/School
Menzies Institute for Medical Research
Publisher
Oxford Univ Press Inc
Place of publication
Journals Dept, 2001 Evans Rd, Cary, USA, Nc, 27513
Rights statement
Copyright 2016 The Authors. Published by Oxford University Press