University of Tasmania
Browse

File(s) under permanent embargo

Synthesis of amidines by palladium-mediated CO2 extrusion followed by insertion of carbodiimides: translating mechanistic studies to develop a one-pot method

journal contribution
posted on 2023-05-20, 00:16 authored by Yang, Y, Noor, A, Allan CantyAllan Canty, Alireza AriafardAlireza Ariafard, Donnelly, PS, O'Hair, RAJ
A palladium-mediated one-pot synthesis of amidines from aromatic carboxylic acids and carbodiimides (RNCNR) is reported as an isoelectronic adaption of CO2ExIn (ExIn = Extrusion–Insertion) reactions developed for the synthesis of thioamides from carboxylic acids and isothiocyanates (RNCS). Multistage mass spectrometry (MSn) experiments for model systems established “proof of concept”, demonstrating decarboxylation of [(L)Pd(O2CAr)]+ (L = 1,10-phenanthroline or py), to give [(L)PdAr]+, followed by reaction with a carbodiimide, RNCNR, to yield [(L)Pd(NRC(NR)Ar)]+ (R = isopropyl). DFT calculations predicted these reactions as highly exothermic and occurring via carbodiimide insertion into the Pd–Ph bond. 2,6-Dimethoxy and 2,4,6-trimethoxy substitution for the Pd–Ar moiety results in slower reactions with minor changes in mechanism. The individual reaction steps associated with the conversion of 2,6-dimethoxybenzoic acid and 2,4,6-trimethoxybenzoic acid into amidines in solution was probed by 1H NMR spectroscopy as was the use of stoichiometric amounts of PdX2 salts (X = O2CCH3 and O2CCF3) and three different carbodiimides, RNCNR (R = iPr, cHex, and Ph). Use of palladium trifluoroacetate gives less of the undesired protodecarboxylation product formed by protonation of the Pd–Ar bond to release ArH. DFT studies for solution phase one-pot reactions provide support for the mechanism and explain competitive factors contributing to the desired insertion step or the alternative protonation step to release ArH. An understanding of mechanism obtained from the model studies encouraged development of a solution-phase one-pot synthesis of N,N′-diisopropyl-2,6-dimethoxybenzamidine using stoichiometric amounts of palladium carboxylates. Reaction conditions, product isolation and characterization, yields, and the scope of the one-pot synthesis of N,N′-R2-2,6-dimethoxybenzamidine were established, in which borohydride is added in workup as a hydrogen source. Attempts to make the chemistry catalytic in palladium are described.

History

Publication title

Organometallics

Volume

38

Pagination

424-435

ISSN

0276-7333

Department/School

School of Natural Sciences

Publisher

Amer Chemical Soc

Place of publication

1155 16Th St, Nw, Washington, USA, Dc, 20036

Rights statement

Copyright 2018 American Chemical Society

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC